Схемы зарядных устройств на 555

Автор: Radioelectronika-Ru · Опубликовано 23.08.2017 · Обновлено 20.03.2018

Микросхема 555-го таймера (отечественный аналог КР1006ВИ1) настолько универсальна, что ее можно встретить в самых неожиданных узлах РЭА. В этой статье рассмотрены схемы импульсных источников питания, в которых используется эта микросхема.
В домашней лаборатории, особенно в полевых условиях, необходим маломощный источник разных постоянных напряжений, который можно запитать от аккумуляторов или гальванических элементов, легкий и портативный. Подобные схемы импульсных источников питания, которые принято называть DC/DC-преобразователями, можно создать на 555-м таймере. Так получилось, что мы в своих конструкциях используем микросхему NE555, но в рассматриваемых схемах можно использовать любые ее аналоги.

Схема импульсного источника питания двухполярного напряжения


Он собран на одной микросхеме NE555 (рис.1), которая служит задающим генератором прямоугольных импульсов. Генератор собран по классической схеме. Частота следования выходных импульсов генератора 6,474…6,37 кГц. Она изменяется в зависимости от напряжения питания, которое может быть 3,6 В (3 аккумулятора в кассете питания) и 4,8 В (при 4 аккумуляторах в кассете). В схеме импульсного источника питания были использованы аккумуляторы ENERGIZER типоразмера АА емкостью 2500 мА-ч.
Прямоугольные импульсы с выхода 3 МС 555 через ограничивающий резистор R5 подаются на базу транзисторного ключа VT1, нагрузкой которого является дроссель L1 индуктивностью 3 мГн. При резком запирании этого транзистора в дросселе L1 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на два параллельных выпрямителя с удвоением напряжения, на выходах которых будут два разнополярных напряжения ±4,5…15 В.

Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1. Постоянное напряжение с движка R1 попадает на вывод 5 МС555 и меняет скважность, а следовательно, и выходные напряжение обоих выпрямителей. Выходные напряжения этого источника будут идеально равны только в том случае, когда скважность импульсов генератора будет равна 2 (длительность импульсов равна паузе между ними). При другой скважности импульсов выходные напряжения источника в точках А и Б будут несколько разниться (до 1…2 В). Столь небольшая разница обеспечивается применением в схеме импульсного источника питания выпрямителей удвоения, конденсаторы которых заряжаются как положительными, так и отрицательными импульсами. Этот недостаток компенсируется простотой и дешевизной схемы.

В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе.
На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.).
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.

Схема импульсного источника питания на двух NE555


На рис.2 показана схема импульсного источника питания с двумя таймерами NE555. Первая из этих микросхем (DD1) включена по схеме мультивибратора, на выходе которого проявляются короткие прямоугольные импульсы, снимаемые с ножки 3. Частота следования этих импульсов изменяется с помощью потенциометра R3.
Этим импульсы поступают на дифференцирующую цепочку C3R5 и параллельно подключенный к резистору R5 диод VD1. Поскольку катод диода подключен к шине питания, короткие положительные всплески продифференцированных импульсов (фронты) шунтируются малым прямым сопротивлением диода и имеют незначительную величину, а отрицательные всплески (спады), попадая на запертый диод VD1, свободно проходят на вход ждущего мультивибратора МС DD2 (ножка 2) и запускают его. Хотя на схеме VD1 указан как Д9И, в этой позиции желательно использовать маломощный диод Шотки, а, в крайнем случае, можно использовать кремниевый диод КД 522.

Читайте также:  Как правильно делать блинчики

Резистор R6 и конденсатор С6 определяют длительность выходного импульса ждущего мультивибратора (одновибратора) DD2, управляющего ключом VT1.
Как в предыдущей схеме импульсного источника питания ток через транзистор VT1 регулируется резистором R7, а нагрузкой служит дроссель из балласта экономичных ламп дневного света 3 мГн.
Поскольку частота генерации МС ниже, чем в первой схеме, то конденсатор выпрямителя с удвоением напряжения С7 имеет емкость 10 мкФ, а для уменьшения габаритов в этой позиции использован керамический SMD-конденсатор, но можно использовать и другие типы конденсаторов: К73, КБГИ, МБГЧ, МБМ или электролитические на подходящее напряжение.
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.2 приведены в табл.2.

Схема импульсного источника питания на таймере NE555 и операционном усилителе


Схема импульсного источника питания, показанная на рис.3, подобна, но в качестве задающего генератора прямоугольных импульсов используется операционный усилитель (ОУ) типа К140 УД12 или КР140 УД 1208. Этот ОУ очень экономичен, может работать от однополярного напряжения питания от 3 до 30 В или от двуполярного ±1,5… 15 В.
Частоту генерации регулируют потенциометром R3. Для увеличения широкополосности выводы 1,4,5 объединяют и заземляют на общий провод. Резистор R6, регулирующий токуправления, уменьшают до минимально возможного значения 100 кОм. Ток потребления ОУ в пределах 1,5…2 мА. Между выходом ОУ и дифференцирующей цепочкой C3R10VD1, от которой запускается одновибратор DD1, включен буферный усилитель на транзисторе VT1 типа ВС237, который служит для увеличения крутизны фронта и спада выходного импульса МС DA1.

В нагрузке ключа VT2 использован дроссель L1 из тех же балластов от экономичных ламп. От перенапряжения этот дроссель защищен цепочкой R13VD2. Его индуктивность 1,65 мГн, но намотан он более толстым проводом, следовательно, его активное сопротивление меньше, а добротность выше. Это позволяет получить на выходе выпрямителя с удвоением VD3VD4 напряжение приблизительно 24…25 В.
Необходимо также отметить, что схема импульсного источника питания рис.3 может работать от однополярного напряжения питания 3,3 В.
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.3 приведены в табл.3.

Похожие статьи:
Малогабаритный импульсный источник питания на микросхеме LNK501
Импульсный источник питания на однопереходном транзисторе
Импульсный источник питания паяльника и дрели
Импульсный источник питания мощностью 20 Вт

Такой блок питания был создан после того, как сгорел мой лабораторный БП, который прослужил всего пару месяцев. Было решено из подручных средств собрать мощный сетевой ИБП, который при желании можно было использовать в качестве зарядного устройства для автомобильных аккумуляторов.

За основу была взята схема полумостового инвертора на драйвере IR2153. По идее, такой инвертор можно собрать из подручного хлама, почти все основные компоненты можно снять из компьютерного блока питания.

На входе питания собран простой сетевой фильтр, пленочные конденсаторы 0,1мкФ подобраны с рабочим напряжением 400 Вольт до и после дросселя, сам дроссель выпаян из платы компьютерного блока питания. На кольце намотаны две независимые обмотки проводом 0,9мм, количество витков каждой обмотки — 10.

Термистор на входе питания защищает полевые ключи от бросков напряжения во время включения схемы.
Диодный мост — можно взять готовый или же собрать из 4-х выпрямительных диодов с обратным напряжением не менее 400 вольт и током 1,5-3 А, в моем случае использован готовый диодный мост на 600 Вольт 4А.

Читайте также:  Перлит что это такое фото

От емкости электролитов зависит основная мощность, электролиты легко можно найти в любом компьютерном блоке питания. Мощность инвертора с таким раскладом компонентов составляет порядка 200ватт.

Трансформатор тоже был взят готовый, от того же компового блока питания. Поскольку ИБП должен работать в качестве лабораторного БП, то диапазон выходных напряжений должен быть широким. Трансформатор от компьютерного БП позволяет получить 24 Вольт без переделок, чего вполне достаточно для штатных радиолюбительских дел. Увеличить выходное напряжение можно двумя способами — повышением рабочей частоты генератора или же перемоткой импульсного трансформатора.

Ограничительный резистор 47К брать с мощностью 2 ватт, он обеспечивает питание микросхемы, номинал резистора может отклоняться на 10% в ту или иную сторону.
В качестве диодного выпрямителя использована мощная сборка Шоттки, которая в себе содержит два мощных диода по 30А.

После выпрямителя напряжение сглаживается конденсатором 50Вольт 1000мкФ, чего вполне достаточно, но при желании можно увеличить емкость.

Полевые ключи обязательно должны быть высоковольтными, можно использовать ключи типа IRF740/IRF840 и другие.
Хочу также заметить, что мощность такого блока питания можно поднять до 400 ватт, при этом заменяя только электролиты, крайне не советую повышать мощность более 500 ватт.

Какой же блок питания без защиты от КЗ? Изначально думал реализовать защиту в первичной цепи схемы, но это будет уже трудно настраиваемая схема, поскольку у многих возникают проблемы связанные именно с защитой, а поскольку изначально мне захотелось собрать устройство, которое бы могли повторить радиолюбители не имеющие нужного опыта работы с ИИП, то решил отказаться от идеи, этим не портить и не усложнять основную схему.

Сама защита реализована на отдельной плате, состоит из двух транзисторов. Номиналом шунта можно грубо настроить ток срабатывания защиты, номиналом переменника, можно более точно настроить на нужный ток срабатывания.

При КЗ и перегрузке блока питания, загорится индикатор и питание отключается, блок выходит из защиты моментально, при отсутствии кз или перегруза на выходе.

Полевой транзистор практически любой, с током 20-100A, можно использовать ключи типа irfz44, irfz40, irfz24, irfz46, irfz48, irf3205 и другие.
Регулятор мощности — одна из важнейших частей блока питания. За основу взял схему ШИМ регулятора, поскольку такое управление имеет очень много плюсов.

.

ШИМ — регулятор построен на таймере 555 и мощном ключе IRFZ44, напряжение плавно можно регулировать от . до максимального выходного напряжения с трансформатора.

Данный блок справляется с любыми задачами, которые могут возникнуть в радиолюбительской практике — легкий, мощный и компактный, вольт/амперметр будет цифровым, заказан отдельно на интернет магазине, будет установлен на блок в ближайшее время.

Всем привет, в этой статье поговорим о том, как собрать устройство для зарядки автомобильного аккумулятора реверсивным, ассиметричным током на полевых транзисторах.

Что такое зарядка АКБ реверсивным током, подробно останавливаться не буду, так как этой информации полно в инете. Для данного устройства было перепробовано много различных схем, большинство из них или не работало вообще, или работа остальных, тем или иным способом не устраивала по параметрам.

Поэтому пришлось начинать с нуля и сделать надёжную, работающую схему, что в конце концов и получилось. Вот так выглядит схема для зарядки аккумуляторов реверсивным током.Данная схема очень элементарна, очень надёжна и очень проста в повторении. Что мы видим на этой схеме, два 555-ых таймера включенных здесь в качестве генераторов импульсов. Каждая микросхема управляет своим полевым ключом.

Читайте также:  Паровые швабры китфорт какая лучше

Соответственно один мосфет отвечает за зарядку аккумулятора, второй мосфет за разрядку. Сначала давайте рассмотрим узел, который отвечает у нас за разрядку аккумулятора.555-ый таймер (№2) здесь настроен на частоту около 1Кгц с коэффициентом заполнения около 85%. Питание данной схемы осуществляется непосредственно от самого аккумулятора, именно поэтому в данной схеме очень важно использовать полевые транзисторы. Потому что в них присутствует, так называемый обратный диод, благодаря этому диоду и возможна работа данной схемы.

Вторая микросхема (№1) отвечает за зарядку аккумулятора, соответственно от того, как вы подберёте частота-задающую обвязку данной микросхемы и будет, в конечном итоге, зависеть время заряда и время разряда вашего аккумулятора.

Значит как же эта схема работает в целом…

Как только на выход нашего устройства мы подключаем какой-либо АКБ, соответственно у нас запускается микросхема №2 и начинает на своём выходе генерировать прямоугольные импульсы, в следствии чего у нас открывается транзистор VT2, который в свою очередь разряжает наш аккумулятор на какую-либо нагрузку, в моём случаи это автомобильная лампа на 21 ватт.

Микросхема под №1 у нас не запускается, так как на выходе нашего устройства стоит диод VD1 (сдвоенный диод-шоттки). На вход нашего устройства мы подключаем какой-либо источник питания, будь то зарядное устройство или какой-нибудь блок питания, соответственно у нас запускается микросхема под №1 и начинает также на своём выходе вырабатывать прямоугольные импульсы с той частотой с которой вы ей задали с помощью частота-задающей обвязки.И как только на выходе №1 микросхемы появляется высокий уровень у нас открываются транзисторы VT1 и VT3. Ну и как видно из схемы транзистор VT1 у нас закорачивает 5 вывод микросхемы №2 на землю, тем самым останавливая генерацию прямоугольных импульсов и запирая транзистор VT2, тем самым прекращая разрядку нашего аккумулятора.

И в то же время открытый транзистор VT3 соединяет наш аккумулятор с нашим источником питания, тем самым обеспечивая его зарядку.

Ну и соответственно, как только с выхода микросхемы №1 высокий уровень исчезает два транзистора VT1 и VT3 закрываются, тем самым разъединяя наше зарядное устройство от нашего аккумулятора и в то же время рассоединяя 5 вывод микросхемы №2 с землёй, тем самым восстанавливая генерацию прямоугольных импульсов на выходе.

По деталям…

Обе микросхемы питаются через 12-ти вольтовые стабилизаторы 7812.

Время заряда и время разряда АКБ можно регулировать изменяя номиналы резисторов R2,R3,R4 и частота-задающего конденсатора С3.

Плата получилась довольно компактная, мосфеты и диод установил на небольшой радиатор.

Хотя они работают в ключевом режиме и нагрев минимальный.

Клемники поставил для подключения разрядной лампы и аккумулятора.Вот подключил, загорелась лампочка, то есть пошла разрядка аккумулятора.Цикл разряда и цикл зарядаПоворачивая бегунок подстроечного резистора можно менять скорость заряда и разряда данной схемы.Данную платку можно разместить непосредственно в корпусе зарядного устройства, тем самым добавив ему очень полезную функцию десульфатации.

Печатку в формате .lay можно скачать здесь.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *