Схема инвертора на sg3525

В статье пойдет речь о контроллере SG3525A – одном из серии управляемых напряжением ШИМ контроллеров с фиксированной частотой преобразования, специально спроектированных для построения любых типов импульсных источников питания и позволяющих до минимума сократить число необходимых внешних компонентов.

Это стало возможным благодаря наличию встроенного опорного источника питания (+5,1 В ±1%) – вывод 16, возможности управления частотой работы внешней RC-цепью – вывод 6 Rт и вывод 5 Ст, длительностью интервала «мертвого» времени – одним внешним резистором между выводами 5 Ст и 7 DISCHARGE, длительностью времени плавного старта – одним внешним конденсатором (вывод 8 SOFT-START), встроенным драйверам (±200 мА) для управления внешними силовыми транзисторами или внешним маломощным трансформатором. Помимо всего вышеуказанного, в ИС предусмотрена возможность синхронизации нескольких источников от одного внешнего тактового сигнала (вывод 3 SYNC) и защиты по току внешних силовых транзисторов (вывод 10 SHUTDOWN).

SG3525 PDF

В общем, хоть эта микросхема и не нова, но ее структура позволяет реализовывать различные схемы преобразователей со многими дополнительными опциями. Такими как: стабилизация выходного напряжения, защита по току мощных ключевых транзисторов, защита от перенапряжения, отключение преобразователя при достижении минимального напряжения питания. Правда, диапазон регулировки ШИМ у нее только 50%.

Эта микросхема входит в модуль управления мощными полевыми транзисторами КМОП структуры в преобразователе напряжения, показанном на фото 1.


Ниже приведен машинный перевод параметров данного модуля. Это скриншот страницы с сайта aliexpress.com.

Купить модуль управления

Для того чтобы разобраться в работе данного модуля, для дальнейшего его использования, пришлось срисовать принципиальную электрическую схему прямо с печатной платы. Обращаю ваше внимание на то, что нумерация электронных компонентов на схеме и нумерация их на оригинальной плате не совпадают.

Назначения элементов и работа схемы

Начнем с конденсатора С1, резисторов R5 и R6 – это элементы, от величин которых зависит рабочая частота контроллера, которую можно регулировать естественно с помощь триммера R5. C3 – от величины этого конденсатора зависит время плавного запуска схемы. От величины резистора R4 зависит длительность интервала «мертвого» времени. Выводы 1 и 2 микросхемы DA1, это входы усилителя ошибки. Так как данный модуль управления предназначен для работы в составе довольно таки мощного преобразователя, по всей вероятности на данном усилителе собрана схема мягкого запуска. Т.е. при включении схемы, в первый момент времени длительность выходных импульсов управления мощными ключами минимальная. По мере заряда конденсатора С2 их длительность увеличивается до нужной величины. Конденсаторы С5 и С6, по всей видимости фильтрующие. На биполярных транзисторах VT2… VT5 собраны дополнительные ключи для управления затворами мощных КМОП транзисторов.

На микросхеме DA4 собрана схема защиты мощных транзисторов от превышения допустимого тока. Схема питается от отдельного микросхемного стабилизатора напряжения DA3. Обратите внимание, что общий провод схемы защиты соединен с «землей» через контакт 8 разъема и датчик тока – шунт. С контакта 8 разъема едет провод на истоки мощных транзисторов. Таким образом, сигнал с шунта через резистор R23 подается на инвертирующий вход операционного усилителя DA4.2. А нижний конец шунта через «земляной» провод через резистор R22 подается на не инвертирующий вход данного ОУ. Коэффициент усиления напряжения шунта регулируют при помощи резистора обратной связи R21 и в общем случае он равен отношению R21/R23. С помощью этого резистора регулируют и уровень тока отсечки схемы защиты. На DA4.1 собран компаратор напряжений. Опорное напряжение с резистивного делителя R18,R19 подается на инвертирующий вход ОУ, вывод 6 DA4.1. На не инвертирующий вход подается усиленное напряжение с датчика тока – шунта. Диод VD2 в схеме компаратора устраняет эффект дребезга выходного напряжения, когда синфазные сигналы на его входе находятся в зоне равенства. В нормальном режиме работы преобразователя усиленное напряжение сигнала с шунта должно быть всегда меньше опорного напряжения на выводе 6 мс DA4.1. Увеличение тока через КМОП транзисторы повлечет за собой увеличение напряжения на выводе 5 мс DA4.1 и как только оно превысит опорное напряжение, компаратор включится и на его выходе появится напряжение примерно равное напряжению его питания, т.е. +5В. Это напряжение через разделительный диод VD1 поступит на вход SHUTDOWN (выключение) — вывод 10 мс DA1.

В схеме есть еще одна защита, схема которой реализована на оптотранзисторе U1, который подключается через разъем и маломощном тиристоре VS1. Какой будет эта защита решать вам. Допустим, преобразователь перешел в аварийный режим, отработала определенная схема защиты. Открылся транзистор оптрона и через его переход коллектор-эмиттер, на управляющий электрод тиристора VS1 поступило открывающее напряжение. Тиристор открылся и уже чрез его и резистор R13 со стабилизатора DA2 вывод 3 подается напряжение на вход «выключение» — вывод 10 мс DA1. При этом на выводах 11 и 14 мс DA1 возникает низкий уровень напряжения. Транзисторные ключи выключаются. Похоже все понятно.

Рисунок печатной платы я делал в программе Lay6.

Я этот модуль приобрел, наверное, год назад, да так руки до него и не достали. И я, думаю, вам быстрее пригодится эта информация. Если найдете ошибки, то комментируйте. Всякое бывает. Успехов. К.В.Ю.

Необходимость создания подобного устройства возникает у каждого, кто хочет оснастить сою машину качественным, уникальным или просто недорогим автозвуком. Разумеется, для питания любого качественного(!) усилителя мощностью более 30Вт напряжения 13.8В (при заведенном двигателе) и уж тем более 12В (при заглушенном) никак не хватит.

Этот ИП я собирался использовать для питания усилителя 4х50Вт + 150Вт. Поэтому было решено делать два двуполярных выходных напряжения +/- 25В и +/- 45В, а чтобы при малых нагрузках напряжение не выходило за допустимые пределы – они должны быть стабилизированы. Ну а для еще большей надежности необходимы режим софтстарта и отключение по сигналу защиты от усилителя.

Читайте также:  Проводка под подвесным потолком

Содержание / Contents

Соответственно, выходов тут несколько:
1) Отказаться от этой бредовой идеи (зачастую самый простой и правильный выбор)
2) Поставить еще пару аккумуляторов и генераторов… (без комментариев =))
3) Собрать сверхмощный усилитель на TDA1562Q и ей подобных (настоящие 80Вт мощности на 4Ома, в кратковременном пике при напряжении питания 14.4В)
4) Приспособить бесперебойник от компа (или т.н. инвертор) и усилитель с питанием 220В (по этому пункту я вообще промолчу)
5) Ну и для самых садомазохистически настроенных – собрать импульсный преобразователь напряжения (далее просто ИП) своими руками.

Все эти решения встречал в реальности (от вида большинства из них долго валялся в конвульсиях прямо рядом с этими «чудесами техники»).
И если вы выбрали вариант, отличный от последнего – читать дальше вам не стоит.
Ну, а если вы всё же считаете себя садомазахистом – читайте повнимательнее и это поможет вам сэкономить кучу нервов!

После огромного количества бессонных ночей, проведенных в поисках по интернету, подобрал оптимальную элементную базу:
Силовые ключи – MOSFET транзисторы IRF3205 — 100А, 55В, цена

35р.
ШИМ контроллер – SG2525/SG3525 – питание 8-35В, частота 100Гц – 500кГц, софтстарт, регулировка «мертвого» интервала и многое другое, при цене

В теорию вдаваться не буду, если заинтересует – опишу в отдельной статье, поэтому сразу перейду к схемам.

↑ ШИМ-контроллер

решил для универсальности сделать отдельным модулем:

На схеме ошибка! Сопротивление R2 — 120 Ом!
Тут всё просто – выходной сигнал ШИМ-контроллера подается на входы буферов VT2VT3 и VT4VT5 и через ограничительные резисторы подается на затворы силовых ключей. Буферы нужны для ускорения процесса зарядки/разрядки входной емкости ключей, а резисторы немного сглаживают фронты для уменьшения высокочастотных помех. Транзистор VT1 управляет режимом работы ШИМ-контроллера при подачи низкого уровня на вход SHDN происходит запуск преобразователя, а при подаче высокого – остановка. Резистором R1 регулируется рабочая частота преобразователя, которая составляет примерно 35кГц.

↑ Далее идет силовая часть:


Резистором R1 регулируется глубина обратной связи, т.е., выходное напряжение. Остальные комментарии вообще излишни.

↑ И рисунки печатных плат для обеих схем:


(вариант для ЛУТ в формате для Proteus прикрепленном файле)
Силовые транзисторы должны быть установлены на радиатор через изолирующие прокладки, а сам радиатор для уменьшения помех должен быть подключен к общему проводу. То же самое относится и к диодам выпрямителя. В выпрямителе использованы диоды в корпусе TO-220 и крепятся к радиатору с двух сторон.

На этом, собственно всё простое и закончилось.

↑ Далее нам необходимо намотать трансформатор…

В качестве магнитопровода можно, как и я, использовать 3 ферритовых кольца 48х28х12 2000НМ, склеенных вместе. Конечно, лучше использовать импортные ферриты, но их достать гораздо сложнее. Поэтому намоточные данные привожу для своего случая.
После склеивания нужно скруглить наружные и внутренние кромки верхнего и нижнего кольца надфилем или наждачной бумагой, чтобы при намотке не повредить о них изоляцию проводов. А если есть возможность, еще и обмотать их каким-либо изолирующим материалом.
После этого приступаем к намотке.
Методом проб и ошибок пришел к выводу, что лучше всего трансформатор мотается проводом 0,63мм косой в несколько жил.
Для первичной обмотки берем 4 косы по 4 провода. Наматываем ими 4 витка, распределяя их равномерно по всей площади колец, делим пополам (по две косы) и получаем первичную обмотку с отводом от середины. При таком способе обеспечивается симметричность обмоток и равномерность электромагнитного поля.
Вторичную обмотку мотается в две косы по 3 провода того же диаметра, 10 витков (25Вольт) + 8 витков (20Вольт).
Зачищаем и лудим концы и припаиваем трансформатор, не забывая про фазировку обмоток!

Дроссели L1-L4 мотаем на ферритовых стержнях, например, от старых приемников, длинной 1,5-2 см, они содержат по 8 витков провода диаметром 1,2мм.
Дроссель L5 имеет такую же конструкцию, но мотается косой из четырех таких же проводов.

↑ Теперь по поводу монтажа

Предложенный вариант ПП разрабатывался по габаритам корпуса от компьютерного БП, немного удлиненной формы, поэтому если вас она не устроит и возникнет желание разработать свою, учтите несколько правил. Силовые дорожки +12В, идущие к средней точке первичной обмотки и ОБЩИЙ, идущий к истокам мосфетов должны быть как можно короче и шире!
Для увеличения сечения советую хорошо их пролудить. От этого во многом зависит КПД. Не советую выводить плюсовой провод через центр трансформатора, т.к. он будет вносить перекос в работу трансформатора и будет источником помех в бортсеть автомобиля.
Общий провод усилителя соединяйте с массой только через источник сигнала и ни в коем случае не в блоке питания, иначе возникнет кольцо, по которому на вход усилителя пойдут все помехи! Так же, во вторичных цепях не допускается ставить конденсаторы ДО дросселей – от прохождения постоянного тока дроссели уйдут в насыщение и эффект от них будет нулевой. В остальном делайте по своему усмотрению.

↑ Далее перейдем к настройке

0.5Ом. При выключенном тумблере потребление должно быть в пределах 10-20мА. После включения тумблера ток должен плавно возрасти, но не должен превышать двух Ампер .
Если всё в норме, доводим резистором R1 на силовой плате выходное напряжение до номинального значения, при этом ток может немного повыситься. После чего резистором на плате ШИМ контроллера добиваемся наименьшего потребления тока (не более 250мА). Обычно получается добиться значения в 100

Если же преобразователь потребляет слишком большой ток во включенном состоянии, то проблема скорее всего в межвитковом замыкании трансформатора. С первого раза редко когда получается идеальный вариант. Мотаем снова.

Читайте также:  Газовая плита кайзер отзывы покупателей

Если всё работает как положено, можно исключить из схемы токоограничительный резистор и нагрузив выход на эквивалент нагрузки (например, резистор 8Ом между выводами +25 и -25), проверяем, чтобы падение напряжения на выходе составляло не более 3-4В.
Преобразователь не выдает полную мощность? Снова перематываем трансформатор.

Важно. Не проверяйте преобразователь замыканием выхода – это лучший способ сжечь мосфеты и получить потрясающие свето-шумо-дымовые эффекты.

↑ Дополнения

На входе и выходе преобразователь очень желательно ставить электролитические конденсаторы Low ESR. На входе – с напряжением 25В, на выходе – 50В и 63В, соответственно для 25В и 45В.
Если использовать обычные конденсаторы, они могут перегреться и в худшем случае взорваться!
Резисторы параллельно выходу нужны для ограничения выходного напряжения без нагрузки, т.к. из-за индукции дросселей и трансформатора напряжение может подняться до 200-300 Вольт! Проверено на практике! Что однозначно выведет из строя конденсаторы и диоды выпрямителя.


Коса – просто скрученные вместе провода. Сматывать удобнее всего привязав одни концы к чему-нибудь неподвижному, а противоположные зажав в патрон дрели и закручивать всё это на небольших оборотах. Сильно увлекаться не советую, т.к. может полопаться лак, если он не очень хорошего качества, и к тому же, увеличится общая длинна проводов, что тоже немного скажется на КПД. А дальше берем нужное количество получившихся кос и наматываем их вместе на сердечник.

Фото готовой конструкции тоже прилагаю. Правда качество не очень и само устройство в полуразобранном состоянии.

↑ ШИМ модуль в сборе

(вместо R8 и R9 установлены перемычки – это не принципиально)

↑ Силовой модуль

Затворы мосфетов соединяются с выходами ШИМ модуля перемычками (на фото их видно. 4 белых провода)


↑ Печатки в Proteus

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Предлагаю вашему вниманию достаточно простой и надежный импульсный блок питания для усилителей. (ИИП)

Схема ИИП. Блок питания в сборе.

Характеристики:

— напряжение питания 220в;

— защита от короткого замыкания, защита от постоянного напряжения на выходе усилителя;

— частота преобразования 48-50кГц;

— напряжение питания +-50в ( может быть любым).

ИИП основан на продвинутом ШИМ контроллере SG3525, который имеет мощный выход и без проблем тягает тяжелые затворы полевиков без применения дополнительных драйверов.

Вторая более усовершенственная плата ИИП со стабилизацией выходного напряжения:

Рисунок печатной платы:

Скачать файл печатной платы стабилизированного ИИП в формате lay: DA-Power-300w-25-03-2019.zip (478 Загрузок)

Фото собранного ИИП.

3-й вариант платы — это стабилизированный однополярный блок питания 14,4в, можно использовать как зарядник для автомобильного аккумулятора.

Рисунок печатной платы:

Фото готовой платы:

Доступны к заказу блоки питания самой последей версии.

Характеристики:
— питание 210-230в;
— мощность долговременная 330вт, кратковременная 550вт.
— выходное напряжение +36в/-36в ( может быть любым)
— дополнительные сервисные напряжения +15/-15в 100мА, +12в 100мА.
— защита от короткого замыкания в нагрузке;
— светодиодная сигнализация работы ИИП.

Возможно изготовление с нужными напряжениями от +20/-20в до +40/-45в.
Кит-набор плата+детали для самостоятельной сборки — 1250рублей.
ИИП со стабилизацией 1800р, без стабилизации — 1700р.

Общая информация по сборке блоков питания:

ТГР.

( Трансфоматор гальванической развязки) один из отпугивающих элементов схемы. Он необходим для того, чтобы обычный не полумостовой драйвер мог управлять полевыми транзисторами,так как между затворами большое напряжение. Сложного в нем ничего нет, он состоит из маленького колечка с тремя одинаковыми обмотками из тонкого провода. Фазировка первичной обмотки не играет роли, а вот вторичные обмотки должны подсоединяться зеркально, для того чтобы происходило по очередное открывание полевых транзисторы, в противном случае откроются одновременно, что приведёт к короткому замыканию и выходу их из строя.

Намотан на колечке 16*10*4,5мм PC 40 сразу 3 проводами, перчика 45 витков, вторички по 37 витков.

Первичка одним цветом вторички другим, необходимо перед монтажем прозвонить выводы и вставить согласно расположению, т.е. я плату развел так, что выводы симметрично вставляются, каждый со своей стороны.

ТГР на плате.

Форма импульсов на ТГР примерно такая:

Если мы недостаточно намотаем витков, то генерация может срываться, это сопровождается шипением силового трансформатора при работе. Вот такой некрасиво работает ТГР с 22 витками на том же колечке, видимо, насыщение играет роль. Лучше перемотать, чем недомотать)) Также ТГР спасает шимку при пробое ключей.

Срыв генерации.

Питание SG3525.

Одной из проблем в построении ИИП- это сложность обеспечить драйверы необходимым питанием 12 в от сети 220в. Способов существует множество, для слабых драйверов ставят мощный резистор, либо резистор послабее, выпрямляя лишь полуволну сетевого напряжения с помощью однополупериодного выпрямителя. Некоторые вообще ставят отдельный трансформатор 50Гц, либо же обратноходовый преобразователь, все это очень усложняет схему. Я пошёл очень простым путём, не стал гальванических отделять силовую и управляющую цепь, так как используется ТГР, а применил простейший конденсаторный блок питания. Он способен обеспечить питанием 12 в и током до 60мА, что достаточно для драйвера SG2525. Для уменьшения пульсаций 50Гц поставил конденсатор 1000мкф 25в. Для более тяжёлых ключей, нужно увеличивать ток блока питания увеличив ёмкость конденсатора 1мкф. Таким образом сильно выигрываем в КПД, греется лишь стабилитрон 13в, на нем выделяется 13в*0.06А= 0.78Вт, берём с запасом 1-ваттный.

Защиты.

Для токовой защиты использовал токовый шунт, состоящий из резистора 0,22ом, при КЗ напряжение на нем становиться достаточно , чтобы засветился светодиод оптопары, ну а открывшийся транзистор включает защелку. На 10-й ноге SG3525 появляется положительный потенциал, модуляция прекращается мгновенно. Дальнейшая работа возможна при обесточивании ИИП на 10 секунд.

Защита от постоянки срабатывает при появлении +0.5в и -2.5в на выходе любого из каналов и практически мгновенно отключает генерацию импульсника. Нужно лишь подключить тонким проводом выходы каналов усилителя к ИИП.

Читайте также:  Препараты для очистки септика

Силовой трансформатор.

Пример упрощенного расчета для усилителя 2*100Вт ( +-35в):

Самое сложное в построении усилителя — это изготовление импульсного трансформатора питания , но если следовать простым шагам, то получится намотать его с первого раза. Для начала надо понять, как вообще работает ИИП. Сетевое напряжение 220в выпрямляется до амплитудного значения синусоиды (220*1,41=310в). ИИП построен по полумостовой схеме, соответственно к трансформатору будет прикладывается половина напряжения питания (310/2=155в). В программе старичка ExeellentIT считаем минимальное количество витков первичной обмотки, для кольца 31*19*13 нужно намотать ровно 50 витков. Толщину провода считаем вручную, для меня так проще, допустим, в наличии имеется провод толшиной 0.7мм по лаку, если убрать лак и замерить еще раз, то получися 0.6мм по меди. Площадь будет соответственно 0.6*0.6*3.14/4=0.3мм². Для импульсного трансформатора допустимый ток через медный повод может быть 5-10А/мм², в зависимости от типа трансформатора и условий охлаждения. Я обычно беру значение 8А/мм², мой провод площадью 0.3мм² может пропустить через себя (0.3*8=2.4А), тогда мощность первичной обмотки будет (2.4А*155=372вт). Теперь самое интересное, рассчитываем вторичные обмотки, но сначала надо определиться с выходным напряжением. Оно будет зависеть от того, сколько мощности мы хотим получить от усилителя.
Пример: нам нужно запитать 2 канала усилителя мощностью по 100ватт, а чтобы получить эту соточку нужно приложить напряжение 20в к нагрузке 4 Ом на выходе. Но 20в — это среднеквадратичное значение напряжения (RMS), амплитудное будет в 1.41 раза больше, 20*1.41=28.2в. Иными словами, для того чтобы получить 100ватт на нагрузку 4 ома, необходимо усилитель питать напряжением +-28в, но это справедливо лишь для стабилизированого источника (не в нашем случае), а также мы же хотим получить 100 чистых ватт, смело добавляем пару вольт, чтобы усилитель давам мало искажений при 100вт, ещё надо учитывать что нестабилизированное напряжение ИИП падает под нагрузкой примерно на 10%. В итоге, чтобы получить 100 чистых ватт нужно (28в+2в)*1.1=33в.
Считаем количество витков вторичной обмотки. Для начала определяем количество вольт на 1 виток:155в/50= 3.1вольт/виток. Для +-33в надо 33/3.1=10,64 витка , берём с запасом 11 витков, напряжение ХХ при этом будет 11*3.1= +-34.1в.
Сам феррит имеет свойство проводить элекричество, сопротивление кольца из материала PC40 обычно бывает в районе 10кОм, поэтому необходимо обмотать кольцо термостойкой лентой, в моём случае это будет доступный всем лейкопластырь, он очень эластичен и хорошо клеится.

Первичка 50 витков для колечка 31*19*13 PC40.

Первичная обмотка.

А вот так выглядят 4 вторички для питания +-50в ( разом 16 витков).

Вторичные обмотки.

Для удобства фазировки я маркирую концы вторички так: ровно, срез под углом, загиб, и большой загиб ( чтобы потом не вызванивать)

Маркировка.

Сфазировать очень просто, на плате я указал выводы ( В- обмотки сверху, Н — снизу, ну или начало или конец, как угодно). Фазировать первичку не нужно!

Фазировка

Силовой трансформатор имеет 4 одинаковые обмотки для того, чтобы использовать всего лишь 2 диода Шоттки с общим катодом. Большие радиаторы им не нужны, так как они имеют малое падение напряжение, которое ещё и уменьшается с нагревом.

Небольшие радиаторы диодов Шоттки.

Прочее:

Дроссели питания мотаются на таких же кольцах, что и ТГР. Но для правильной работы во избежание насыщения необходимо сделать немагнитный зазор, который легко пропилить обычной болгаркой. Нужно намотать примерно 25 витков:


Дроссели после диодов сглаживают пульсации и ограничивают ток через полевые транзисторы в момент пуска преобразователя. Сама микросхема в момент старта на затворы пускает тонкие иголки ( режим мягкого старта), которые расширяются со временем, тем самым осуществляется плавный пуск ИИП. Например IR2153 сразу полностью открывает полевики, в момент пуска они часто горят, тем более если во вторичке высокое питание и большие емкости электролитов ( считай, кратковременное КЗ при пуске). SG3525 в щадящем режиме приоткрывает полевые транзисторы, с ней даже работает китайский левак. Ёмкость конденсатора после сетевого выпрямителя берем из расчёта 1мкф на 1вт мощности, в моём случае это 330мкф 400в, т.е с запасом.

Очень важно! Первый запуск ИИП ( чтобы в космос не улетел).

Вот хороший способ безопасно проверить работоспособность преобразователя после сборки:
Ставим перемычку на конденсатор 1мкф, который питает SG3525, вместо 220в продаём питание 12в, если все собрано верно, то на ТГР будет происходить геренация, а на выходе блока питания появится постоянное напряжение около 1-2вольта ( зависит от количества витков вторички). Главное потом убрать перемычку перед включением в сеть, сначала через резистор 100-200ом, затем напрямую. Делаеться это во избежание поломки ИИП в результате какой-либо ошибки.

Вот этот конденсатор 10мкф в цепи защиты нужен для того, чтобы не было ложных срабатываний токовой защиты в момент пуска с большими емкостями питания ( справедливо для 8000 мкф и +-35в в плече). Не стоит злоупотреблять емкостями во вторичке, от этого плохо полевикам в момент пуска, а бесконечно замедлять защиту нельзя увеличивая емкость конденсатора С8 10мкф, иначе при КЗ может не успеть сработать.

Снабберы я не ставлю, без них меандр на силовом трансформаторе хороший:

Заземление.

Внизу платы есть отверстие под болт, так вот это точка соединения блока питания с корпусом, чтобы избавится от наводок шума и прочее. Данный блок питания успешно применяю в своих усилителях, шума и наводок нет!! Высоковольтные конденсаторы 2,2нф 2кВ создают виртуальную землю, они применяются во всех импульсных промышленных устройствах. Больше на корпус никакие дополнительные земли и нули кидать не нужно.

Фото процесса и готового ИИП.

Изготовление плат. Травление в растворе перекиси и лимонной кислоты с солью.

Подготовка. ЛУТ — лазерный принтер + утюг.

Драйвер очень умный, при желании можно прикрутить стабилизацию выходного напряжения.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *