Схема автоматического отключения пускового конденсатора

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(150000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на http://www.diagram.com.ua


сделано в Украине

Бесконтактное отключение пусковой обмотки электродвигателя

В статье приводится описание простого устройства бесконтактного отключения пусковой обмотки однофазного асинхронного двигателя с короткозамкнутым ротором по окончании процесса его запуска.

Одновременно устройство обеспечивает самозапуск двигателя после перерыва в электроснабжении и остановки двигателя.

Возможно использование устройства для пуска конденсаторных электродвигателей с автоматическим бесконтактным отключением пускового конденсатора и с обеспечением их самозапуска, а также для пуска трехфазных электродвигателей в однофазном режиме.

В "Электрике" 1/02, с.5 опубликована схема бесконтактного отделения пусковой обмотки однофазного электродвигателя (ЭД) путем использования конденсатора, включенного в диагональ диодного моста по постоянному току. По окончании заряда конденсатора диодный мост "запирается" заряженным до амплитудного значения напряжения сети конденсатором и протекание тока через пусковую обмотку прекращается, т.е. пусковая обмотка автоматически выводится из работы по окончании процесса запуска ЭД.

Предлагаемая идея отключения пусковой обмотки ЭД не нова и уже имела место на страницах периодики (см. Бюл. изобр. N44, 30.11.86, РЛ 6/93, c.27).

Недостатком предложенного решения является отсутствие возможности самозапуска ЭД при исчезновении напряжения в питающей сети и отсутствии постоянного контроля за работой последнего. В результате конденсатор остается в заряженном состоянии, а рабочая обмотка ЭД — подключенной к обесточенной сети через контакты выключателя электродвигателя.

При восстановлении напряжения в сети рабочая обмотка ЭД обтекается током, а пусковой ток практически отсутствует, так как конденсатор заряжен, в результате запуск ЭД невозможен, его рабочая обмотка перегревается и двигатель выходит из строя. По этой же причине устройство не может быть использовано для пуска конденсаторного ЭД, так как пусковой момент на валу ЭД может оказаться недостаточным для самозапуска под нагрузкой.

На рисунке приведена принципиальная схема устройства, которая обеспечивает более надежную работу ЭД при бесконтактном отделении пусковой обмотки с возможностью использования для конденсаторных ЭД. Предлагаемое техническое решение защищено авторским свидетельством [1].

Устройство содержит двухполюсный переключатель SA1 на два положения, с помощью которого контактами 1-2 и 3-4 подключается к сети рабочая обмотка Р электродвигателя и параллельно соединенная с ней через диодный мост VD1. VD4 по цепи переменного тока пусковая обмотка П. Диодный мост по цепи постоянного тока замкнут времязадающей RC-цепочкой, которая выполняет функции динамического фазовращателя, что обеспечивает фазовый сдвиг тока пусковой обмотки относительно рабочей. В результате на валу ЭД имеет место пусковой момент.

Контакты переключателя 2-5 и 4-6 обеспечивают подключение RC-цепочки к зажимам рабочей обмотки ЭД при его отключении от сети. Конденсатор С1 дает возможность использовать устройство для пуска и работы ЭД с постоянно включенными при работе двумя обмотками (конденсаторные ЭД).

Устройство работает следующим образом. При включении ЭД с помощью двухполюсного переключателя SA1 обтекается током его рабочая обмотка Р и пусковая П через замкнутые контакты 1-2 и 3-4 переключателя. При этом положительная полуволна тока пусковой обмотки П проходит через диод VD1, конденсатор С времязадающей RC-цепочки, диод VD2, а отрицательная — через диод VD3, конденсатор С, диод VD4. В результате конденсатор С обеспечивает сдвиг между токами пусковой и рабочей обмоток ЭД и последний запускается.

По мере заряда конденсатора С ток через пусковую обмотку уменьшается. По истечении промежутка времени, определяемой емкостью данного конденсатора, диоды моста запираются, в результате протекание тока через пусковую обмотку прекращается. Пуск ЭД окончен.

При работе ЭД конденсатор С все время находится в заряженном состоянии. При отключении ЭД от сети конденсатор С через контакты 2-5 и 4-6 переключателя SA1 подключается к зажимам рабочей обмотки Р и разряжается на эту обмотку, создавая при этом тормозной момент на валу и тем самым одновременно подготавливая ЭД к повторному запуску, т.е. обеспечивая нулевую готовность последнего.

Исчезновение напряжения в питающей сети при работе ЭД приводит к разряду конденсатора С на резистор R, в результате схема автоматически готова к повторному пуску ЭД, что обеспечивает его самозапуск при восстановлении напряжения в питающей сети.

Читайте также:  Чтобы вода в прудике не цвела

Детали. В качестве переключателя SA1 используется любой, подходящий по току и напряжению. Диоды VD1. VD4 для микромашин (до 600 Вт) — диодные блоки КЦ402А,Б. КЦ405А,Б на 500, 600 В и ток 1 А или четыре диода типа КД202 с буквенными индексами М, Н, Р, С. Конденсатор С1 подбирают примерно из расчета 7 мкФ на 100 Вт мощности ЭД типа МБГО-2, КБГ-МН или МБГЧ, что предпочтительней, на напряжение не ниже 400 В.

Конденсатор С времязадающей цепочки — любой электролитический емкостью С = (2. 3)С1 и напряжением 400, 450 В. резистор R типа МЛТ-2 на 50. 100 кОм.

Устройство при работе ЭД не потребляет электроэнергии и практически не требует наладки.

  1. Авторское свидетельство СССР N1274100, кл.Н02Р 1/42, заявл. 01.03.84.

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

Проблема…
После покупки компрессора столкнулся с проблемой запуска его в гараже. И связано это не с неисправностью компрессора, а с напряжением в гараже – электричество в нем, что бы свет горел. Поначалу компрессор после нескольких попыток включения-выключения запускался, когда «прогреется». Потом стал включаться, только когда на улице горело освещение, а потом и вообще отказывался запускаться…

Компрессор Fiac CCS 50/338 M
Объем ресивера 50 л
Вес 55 кг
Мощность 2,25 кВт
Напряжение 220 В
Производительность 330 л/мин
Рабочее давление 10 бар

Поиск причин проблемы показал, что в момент запуска асинхронного двигателя пусковой ток возрастает, но местная сеть не способна обеспечить данную мощность.
Есть вариант установить стабилизатор напряжения, но он должен быть достаточно мощным, что бы выдержать скачки нагрузки. Я решил попробовать данный вариант и для моего компрессора мощностью 2,5 кВт я взял стабилизатор RUCELF SDW-10000-D номинально мощностью 10кВт.
Ситуация улучшилась – компрессор снова стал запускаться после нескольких попыток включения-выключения, но только еще добавились танцы с стабилизатором – при выходе компрессора на «режим» он выключался по защите. После «прогрева» компрессора – он запускался без «танцев». Но это тоже не то, что нужно.

Есть другой вариант…
Так как трехфазный двигатель моего компрессора включен в однофазную сеть подключением третьей обмотки через фазосдвигающий конденсатор, то того чтобы электромотор запускался «легче», емкость конденсатора должна меняться:
— запуск — с пусковым конденсатором (ввиду больших пусковых токов),
— после разгона — его пусковой конденсатор отсоединяют, оставляя только рабочий.
Если пусковой конденсатор не отсоединить – двигатель перегреется и сгорит.
Решил попробовать и этот вариант.

Схема.
Общая схема достаточно простая.

При старте компрессора пусковой конденсатор Сп подключается параллельно рабочему Ср – на схеме кнопка «Разгон» и через определенное время отключается.
Для того, чтобы автоматизировать процесс – используют реле времени. Подключаем его так, чтобы после включения компрессора он выключался через установленное время и отключал пусковой конденсатор (см. схему далее).

Нашел рекомендации по основным параметрам такой схемы:
— время работы пускового конденсатора – около 3 секунд;
— емкость пускового конденсатора в 2…2,5 раза больше рабочего;
— допустимое напряжение пускового конденсатора должно превышать в 1,5 раза напряжение сети — например 450 В;
— пусковой конденсатор необходимо зашунтировать резистором R1 сопротивлением 200…500 кОм, через который будет "стекать" оставшийся электрический заряд.

На компрессоре установлен двигатель:
Асинхронный, тип 80
Напряжение 230 В, 50Hz
Обороты 1

2850 об/мин
Ток 12 А
cos = 0,95
Мощность 2,5 кВт
Конденсатор 60 мКф

С учетом данной информации приобрел, необходимые компоненты.

Необходимо:
ПРИМЕЧАНИЕ: Ниже указаны цены, которые запомнил.
— конденсатор пусковой ДПС-0,45-120 (120 мкФ, 450 В) – цена 880 рублей;
ПРИМЕЧАНИЕ: Есть пусковые конденсаторы и поменьше, но у меня с ним не сложилось. При испытании он по моей вине вздулся.

— реле ST6P-4, рабочее напряжение 220В, максимальный ток на контактах 5 А;

Если место позволяет, то можно использовать колодку для реле и избавиться от пайки.

— резистор 200…500 кОм мощность 2 Вт;
— выключатель;
— провода;
— клеммы — для подключения к конденсатору;
— термоусадка/кембрик/изолента;
— корпус;
— два хомута (диаметр около 80 мм).

Инструмент:
— паяльник;
— отвертка;
— нож;
— напильник;
— дрель;
— сверло диаметром 8 мм;
— ключ / головка 12-13;
— «обжимник» – для обжима клемм.

Сначала собираем схему – соединяем внешний конденсатор и реле и засовываем все это в корпус.

Для того, что бы иметь возможность отключить схему – включил в схему выключатель.

Поскольку конденсатор «получился» очень большой и с винтом для крепления – его выбрал основой конструкции – на нем с помощью хомутов закрепил корпус с реле. Для этого немного доработал ухи корпуса.

Установка:
Винтом конденсатора вся эта конструкция крепится к компрессору – для этого на основании компрессора в подходящем месте сверлим отверстие диаметром 8 мм.

Подключение:
Подключение достаточно простое — нужно подключить три провода:
1. Подключение 2 проводов к рабочему конденсатору.
— снимаем конденсатор – он находится под двигателем, и крепится гайкой;

— снимаем защитный колпачок и отсоединяем провода от рабочего конденсатора;
— протягиваем провода от внешнего блока и подключаем их в разрыв между конденсатором и его проводами от двигателя;
ПРИМЕЧАНИЕ: Удобнее, когда цвет проводов внешнего конденсатора и рабочего совпадают – не нужно задумываться при подключении, что и куда цеплять – у меня это синий и красный.
— устанавливаем рабочий конденсатор на место.
2. Подключение управляющего провода к Переключателю давления:
— откручиваем винт и снимаем крышку;
— заводим провод от внешнего блока через отверстие ввода и подключаем к контакту (с коричневым проводом);

Читайте также:  Блестящий картон для творчества

— ставим крышку назад.
Устанавливаем время задержки на реле 3 секунды и включаем компрессор.

Ниже видео пример – как себя ведет компрессор с выключенным и включенным внешним пусковым конденсатором.

Простые способы включения трехфазных двигателей в однофазную сеть

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.
Переключение двигателя с одного напряжения на другое производится подключением обмоток «на
звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в
каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
— обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется
6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.
можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.
Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не
корректными по следующим причинам:
1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
как следствие увеличенного тока в обмотке.
2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
/- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
ненагруженного двигателя можно обойтись только рабочим конденсатором.

Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б
или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C
мкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты
от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому
подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и
Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,
затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от
нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что
относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.

Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной
кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей
мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой
переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя,
между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не
отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует
контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-
графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,
если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле
более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле
отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры
оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в
однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.

Читайте также:  Наряды из платков своими руками

Практические схемы включения

Работает схема следующим образом: при переводе переключателя в положение 3 и
нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий
конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение
1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки
необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому
переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение
1 должно быть включено только при удержании. При мощности двигателя до 300Вт и
необходимости быстрого торможения, гасяший резистор можно не применять, при большей
мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно
быть меньше сопротивления обмотки двигателя.

Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в
электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в
любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть
двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя
до начала торможения. Если время работы двигателя между пуском и торможением превышает 1
минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение
конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от
фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель
переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение
постоянным током. Используется обычный переключатель на два положения.

Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть система торможения, но ее при ненадобности легко
выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого
при включении треугольником. Для изменения направления вращения нужно поменять местами
начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск
происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости
конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на
номинальные обороты. Емкость можно брать с запасом, так как после заряда конденсатор не
оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора
и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248
подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и
мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение
по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.

Использование электролитических конденсаторов в качестве пусковых и рабочих

Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.
Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не
намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не
дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее
350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком
случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы
С1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать
батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость
нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости
может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать
взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,
особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,
необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (
взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от
разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,
теперь немного о конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,
конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать
изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно
расположить на изоляционной пластинке и при большой мощности поставить их на небольшие
радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.
Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как
пусковыми так и рабочими.

Включение пускового конденсатора при помощи реле тока.

Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочего
двигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя в
однофазную сеть, можно осуществить автоматически, — при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машины
типа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую или
угольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.
при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, и
стандартные контакты свариваются между собой. При применении графита, такого явления не
наблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки
40-45 витков.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *