Элементарными логическими выражениями являются инверсия

Алгебра логики рассматривает любое высказывание только с одной точки зрения — истинно оно или ложно.

Заметим, что зачастую трудно установить истинность высказывания. Так высказывание «Площадь поверхности Индийского океана равна 75 млн км 2 » в одной ситуации можно считать ложным, а в другой — истинным. Ложным — так как указанное значение неточное и вообще не постоянное. Истинным — если рассматривать его как некоторое приближение, приемлемое на практике.

Употребляемые в обычной речи слова и словосочетания не, и, или, если. , то, тогда и только тогда и др. позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Bысказывания, образованные из других высказываний с помощью логических связок, называются составными. Высказывания, не являющиеся составными, называются элементарными.

Так из элементарных высказываний «Петров — врач», «Петров — шахматист» при помощи связки и можно получить составное высказывание «Петров — врач и шахматист», понимаемое как «Петров — врач, хорошо играющий в шахматы».

При помощи связки или из этих же высказываний можно получить составное высказывание «Петров — врач или шахматист», понимаемое в алгебре логики как «Петров или врач, или шахматист, или и врач и шахматист одновременно».

Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение:

НЕ. Операция, выражаемая этим словом, называется отрицанием и обозначается чертой над высказыванием (или знаком ).

Высказывание истинно, когда A ложно, и ложно, когда A истинно. Например, «Луна — спутник Земли» (А); «Луна — не спутник Земли» ( ).

Схема НЕ (инвертор) реализует операцию отрицания.

Если на входе схемы 0, то на выходе 1; если на входе 1, на выходе 0. Условное обозначение инвертора — на рис. 5.1, а таблица истинности — в табл. 5.1.

Рис. 5.1. Условное обозначение инвертора

Талица 5.1. Таблица истинности инвертора

А Не А
Да (1) Нет (0)
Нет (0) Да (1)

И. Операция, выражаемая этой связкой, называется конъюнкцией (лат. conjunctio — соединение), или логическим умножением, и обозначается точкой « . » (может также обозначаться знаками ^ или &).

Высказывание А · В истинно тогда и только тогда, когда оба высказывания А и В истинны. Например, высказывание «10 делится на 2 и 5 больше 3» истинно, а высказывания «10 делится на 2 и 5 не больше 3», «10 не делится на 2 и 5 больше 3», «10 не делится на 2 и 5 не больше 3» — ложны.

Схема И реализует конъюнкцию двух или более логических значений.

Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис. 5.2, таблица истинности конъюнкции — в табл. 5.2.

Читайте также:  Высота грунта в теплице

Рис. 5.2. Условное обозначение схемы И с двумя входами

Талица 5.2. Таблица истинности схемы И с двумя входами

А В А и В
Да (1) Да (1) Да (1)
Да (1) Нет (0) Нет (0)
Нет (0) Да (1) Нет (0)
Нет (0) Нет (0) Нет (0)

ИЛИ. Операция, выражаемая этой связкой (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом).

Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны. Например, высказывание «10 не делится на 2 или 5 не больше 3» ложно, а высказывания «10 делится на 2 или 5 больше 3», «10 делится на 2 или 5 не больше 3», «10 не делится на 2 или 5 больше 3»— истинны.

Схема ИЛИ реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе схемы ИЛИ будет единица, на ее выходе также будет единица.

Условное обозначение схемы ИЛИ представлено на рис. 5.3, таблица истинности — в табл. 5.3.

Рис. 5.3. Условное обозначение схемы ИЛИ с двумя входами

Талица 5.3. Таблица истинности схемы ИЛИ с двумя входами

А В А или В
Да (1) Да (1) Да (1)
Да (1) Нет (0) Да (1)
Нет (0) Да (1) Да (1)
Нет (0) Нет (0) Нет (0)

Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (НЕ), затем конъюнкция (И), после конъюнкции — дизъюнкция (ИЛИ) и в последнюю очередь — импликация.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9665 — | 7535 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Присоединение частицы «не» к высказыванию называется операцией логического отрицания.

Операция логического отрицания является унарной, так как имеет один аргумент. Иначе её называют инверсией, дополнением, НЕ и обозначают Ā или ¬А, NOT A.

Логическое отрицание (инверсия) делает истинное высказывание ложным и, наоборот, ложное — истинным.

Пусть А = «Два умножить на два равно четырём» — истинное высказывание, тогда высказывание F = «Два умножить на два не равно четырём», образованное с помощью операции логического отрицания, — ложно.

Образуем высказывание F, являющееся логическим отрицанием А:

Истинность такого высказывания задаётся таблицей истинности функции логического отрицания (таблица 3).

Таблица 3 – Таблица истинности функции логического отрицания (инверсия)

Истинность высказывания, образованного с помощью операции логического отрицания, можно легко определить с помощью таблицы истинности.

«Два умножить на два не равно четырём» ложно (А = 0),

а полученное из него в результате логического отрицания высказывание «Два умножить на два равно четырём» истинно (F = 1).

Логическое следование (импликация)

Операцию логического следования иначе называют импликацией и для обозначения используют символ → "следовательно" и выражается словами ЕСЛИ … , ТО ….

Читайте также:  Что за гусеницы едят помидоры

Логическое следование: ИМПЛИКАЦИЯ – связывает два простых логических выражения, из которых первое является условием (А), а второе (В) – следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно (таблица 4).

Импликацией А→В называется высказывание, которое ложно тогда и только тогда, когда А истинно и В ложно.

Таблица 4 – Таблица истинности функции логического следования (импликация)

Логическое тождество (эквиваленция)

Операцию логического тождества обозначают символами =, ↔,

Интуитивно можно догадаться, что высказывания эквивалентны (равносильны), когда их значения истинности одинаковы.

Например, эквивалентны высказывания: "железо тяжёлое" и "пух лёгкий", так же как и высказывания: "железо лёгкое" и "пух тяжёлый". Обозначим эквиваленцию символом ↔ и запись "А ↔ В" будем читать "А эквивалентно В", или "А равносильно В", или "А, если и только если В".

Таким образом, эквиваленцией двух высказываний А и В называется такое высказывание, которое истинно тогда и только тогда, когда оба эти высказывания А и В истинны или оба ложны.

Высказывание типа "А, если и только если В" можно заменить высказыванием "Если А, то В и, если В, то А".

Следовательно, функцию эквиваленции можно заменить комбинацией функций импликации и конъюнкции.

Запишем таблицу истинности для эквиваленции (таблица 5):

Таблица 5 – Таблица истинности функции логического тождества (эквиваленция)

Конъюнкция или логическое умножение (в теории множеств – это пересечение)

Конъюнкция является сложным логическим выражением, которое истинно в том и только том случае, когда оба простых выражения являются истинными. Такая ситуация возможно лишь в единственном случае, во всех остальных случаях конъюнкция ложна.

Обозначение: &, $wedge$, $cdot$.

Таблица истинности для конъюнкции

  1. Если хотя бы одно из подвыражений конъюнкции ложно на некотором наборе значений переменных, то и вся конъюнкция будет ложной для этого набора значений.
  2. Если все выражения конъюнкции истинны на некотором наборе значений переменных, то и вся конъюнкция тоже будет истинна.
  3. Значение всей конъюнкции сложного выражения не зависит от порядка записи подвыражений, к которым она применяется (как в математике умножение).

Дизъюнкция или логическое сложение (в теории множеств это объединение)

Дизъюнкция является сложным логическим выражением, которое истинно практически всегда, за исключением, когда все выражения ложны.

Попробуй обратиться за помощью к преподавателям

Таблица истинности для дизъюнкции

  1. Если хотя бы одно из подвыражений дизъюнкции истинно на некотором наборе значений переменных, то и вся дизъюнкция принимает истинное значение для данного набора подвыражений.
  2. Если все выражения из некоторого списка дизъюнкции ложны на некотором наборе значений переменных, то и вся дизъюнкция этих выражений тоже ложна.
  3. Значение всей дизъюнкции не зависит от порядка записи подвыражений (как в математике – сложение).

Отрицание, логическое отрицание или инверсия (в теории множеств это отрицание)

Отрицание — означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО и в итоге получаем, что если исходное выражение истинно, то отрицание исходного – будет ложно и наоборот, если исходное выражение ложно, то его отрицание будет истинно.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Обозначения: не $A$, $ar$, $¬A$.

Таблица истинности для инверсии

Читайте также:  Ниссан ноут электросхема отопителя

«Двойное отрицание» $¬¬A$ является следствием суждения $A$, то есть имеет место тавтология в формальной логике и равно самому значению в булевой логике.

Импликация или логическое следование

Импликация — это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть, данная логическая операция связывает два простых логических выражения, из которых первое является условием ($A$), а второе ($A$) является следствием условия ($A$).

Обозначения: $ o$, $Rightarrow$.

Таблица истинности для импликации

  1. $A o B = ¬A vee B$.
  2. Импликация $A o B$ ложна, если $A=1$ и $B=0$.
  3. Если $A=0$, то импликация $A o B$ истинна при любом значении $B$, (из лжи может следовать истинна).

Эквивалентность или логическая равнозначность

Эквивалентность — это сложное логическое выражение, которое истинно на равных значениях переменных $A$ и $B$.

Обозначения: $leftrightarrow$, $Leftrightarrow$, $equiv$.

Таблица истинности для эквивалентности

Строгая дизъюнкция или сложение по модулю 2 ( в теории множеств это объединение двух множеств без их пересечения)

Строгая дизъюнкция истинна, если значения аргументов не равны.

Для функции трёх и более переменных результат выполнения операции будет истинным только тогда, когда количество аргументов равных $1$, составляющих текущий набор — нечетное. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.

Обозначения: $A oplus B$ (в языках программирования), $A≠B$, $A wedge B$ (в языках программирования).

Таблица истинности для операции сложения по модулю два

Свойства строгой дизъюнкции:

Стрелка Пирса

Бинарная логическая операция, булева функция над двумя переменными. Названа в честь Чарльза Пирса и введена в алгебру логики в $1880—1881$ гг.

Обозначения: $downarrow$ , ИЛИ-НЕ

Таблица истинности для стрелки Пирса

Стрелка Пирса, как и конъюнкция, дизъюнкция, отрицание, образует базис для булевых функций двух переменных. При помощи стрелки Пирса, можно построить все остальные логические операции, например:

$X downarrow X = ¬X$— отрицание

$(X downarrow Y) downarrow (X downarrow Y) equiv X vee Y$ — дизъюнкция

$(X downarrow X) downarrow (Y downarrow Y) equiv X wedge Y$ — конъюнкция

$((X downarrow X) downarrow Y) downarrow ((X downarrow X) downarrow Y) = X o Y$ — импликация

В электронике стрелка Пирса представлена в виде элемента, который носит название «операция 2ИЛИ-НЕ» (2-in NОR).

Штрих Шеффера

Булева функция двух переменных или бинарная логическая операция. Введена в рассмотрение Генри Шеффером в 1913 г.

Обозначения: $|$, эквивалентно операции И-НЕ.

Таблицей истинности для функции штрих Шеффера

Штрих Шеффера образует базис для всех булевых функций двух переменных. Применяя штрих Шеффера можно построить остальные операции, например,

Для электроники это означает, что реализация схем возможна с использованием одного типового элемента (правда это дорогостоящий элемент).

Порядок выполнения логических операций в сложном логическом выражении

  1. Инверсия(отрицание);
  2. Конъюнкция (логическое умножение);
  3. Дизъюнкция и строгая дизъюнкция (логическое сложение);
  4. Импликация (следствие);
  5. Эквивалентность (тождество).

Для того чтобы изменить указанный порядок выполнения логических операций, необходимо использовать скобки.

Общие свойства

Для набора из $n$ логических переменных существует ровно $2^n$ различных значений. Таблица истинности для логического выражения от $n$ переменных содержит $n+1$ столбец и $2^n$ строк.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *