Электрические термометры сопротивления принцип действия

Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями. Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС. Конструкция термистора

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Расшифровка аббревиатур

Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:

  • ТСМ это термометр сопротивления (ТС), в чувствительном элементе (ЧЭ) которого используется медная проволока (М).
  • ТСП, в применяется платиновый (проволока из платины) ЧЭ.
  • КТС б – обозначение комплекта из нескольких платиновых ТС., позволяющих провести многозонные измерения, как правило, монтаж таких устройств производится на вход и выход системы отопления, чтобы установить разность температур.
  • ТПТ – технический (Т) платиновый термометр (ПТ).
  • КТПТР – комплект из ТПТ приборов, буква «Р» в конце указывает, что может производиться не только измерение разницы температур между различными датчиками.
  • ТСПН – «Н» в конце ТСП, обозначает, что датчик низкотемпературный.
  • НСХ – под данным сокращением подразумевается «номинальная статическая характеристика», соответствующая стандартной функции «температура-сопротивление». Достаточно посмотреть таблицу НСХ для pt100 или любого другого датчика (например, pt1000, rtd, ntc и т.д.), чтобы иметь представление о его характеристиках.
  • ЭТС – эталонные приборы, служащие для калибровки датчиков.

Чем отличается термосопротивление от термопары?

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Платиновые измерители температуры

Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.

В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С -1 , эталонных – 0,03925°С -1 . Диапазон измеряемой температуры: от-196,0°С до 600,0°С. К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры. Недостаток – наличие драгметаллов увеличивает стоимость конструкции. Необходимо заметить, что современные технологии позволяют минимизировать содержание этого металла, что делает возможным снижение стоимости продукции.

Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.

Датчик термопреобразователь ТСП 5071 производства Элемер

Никелевые термометры сопротивления

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С -1 . Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С -1 , диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.

Конструктивное исполнение «Strain free»

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.

Читайте также:  Ваза из шишек пошагово с фото

Пример исполнения «Hollow Annulus»

Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.

Миниатюрный пленочный датчик

Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.

Класс допуска

Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.

Таблица 1. Классы допуска.

Класс точности Нормы допуска

°C |t |

Диапазон измерения температуры Платиновые датчики Медные Никелевые Проволочные Пленочные AA ±0,10+0,0017 -50°C …250°C -50°C …150°C x x A ±0,15+0,002 -100°C …450°C -30°C …300°C -50°C …120°C x B ±0,30+0,005 -196°C …660°C -50°C …500°C -50°C …200°C х С ±0,60+0,01 -196°C …660°C -50°C …600°C -180°C …200°C -60°C …180°C

Приведенная в таблице погрешность отвечает текущим нормам.

Схемы включения ТСМ/ТСП

Существует три варианта подключения:

  • 2-х проводное (см. А на рис. 7), этот наиболее простой способ используется в тех случаях, когда точность результатов не критична. Дополнительную погрешность создает номинальное сопротивление проводников, которыми подключается датчик. Обратим внимание, что для классов точности A и AA данная схема включения неприемлема. Рисунок 7. Двухпроводная, трехпроводная и четырехпроводная схема включения термометра сопротивления
  • 3-х проводное (В). Такой вариант обладает более высокой точностью, чем 2-х проводная схема вариант подключения. Это происходит за счет того, что появляется возможность измерить сопротивление монтажных проводов, чтобы учесть их воздействие.
  • 4-х проводное. Этот вариант позволяет полностью исключить воздействие сопротивления монтажных проводов на результаты измерений.

В измерительных приборах ТС, как правило, включен по мостовой схеме.

Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха

Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.

Обслуживание

Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.

Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:

  • Проверка условий, в которых эксплуатируется датчик.
  • Внешний осмотр на предмет целостности конструкции и кабельных соединений, проверка хода подвижного штуцера (если таковой имеется).
  • Помимо этого проверяется наличие пломб.
  • Проверяется заземление.

Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.

Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.

Платиновый эталонный ПТС (датчик ЭТС 100)

Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.

Градуировочная таблица для терморезистора pt100 (фрагмент, без указания пределов градуировки измерений)

Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.

Термометр сопротивления – это средство измерения температуры, действие которого основано на использовании зависимости электрического сопротивления чувствительного элемента от температуры.

Термометр сопротивления состоит из термопреобразователя сопротивления, вторичного прибора (уравновешенного, неуравновешенного моста или логометра), соединительной линии, прокладываемой изолированными проводами или кабелями с медными жилами.

Термопреобразователи сопротивления

Измерение температуры по электрическому сопротивлению металлов основывается на зависимости их сопротивления от температуры. Для изготовления проволочных термопреобразователей применяют медь, платину, никель, железо. Лучшим материалом, несмотря на дороговизну, является платина. Она инертна и длительное время сохраняет свои свойства в широком диапазоне температур от —260 до 1100°С.

Недостатком меди является невысокое удельное сопротивление и интенсивное окисление ее в воздухе при температурах >200°С.

Никель устойчив против окисления на воздухе до 400°С, однако применяется для измерения температур лишь до + 180°С из-за значительной нелинейности характеристики при более высоких температурах.

Термопреобразователи изготавливаются из металла одинаковой чистоты, что проверяется измерением соотношения R и R100 (сопротивлений при температуре 0 и 100 °С соответственно). При поверке термопреобразователей сопротивлений достаточно измерить эти два сопротивления, чтобы быть уверенным в правильности их градуировки (номинальной статической характеристики) на всем рабочем диапазоне температур.

Определение температуры по сопротивлению производится с помощью градуировочных таблиц (приложение 5).

Поверка термопреобразователей сопротивления, находящихся в эксплуатации, производится в соответствии с ГОСТ 8.461-82 (СТ СЭВ 1058-78). Порядок поверки следующий:

внешний осмотр, выявление видимых повреждений защитной арматуры и чувствительного элемента, удаленного из защитной арматуры;

измерение сопротивления изоляции при помощи мегометра на 500 В;

поверка отношения путем сравнения показаний поверяемого термопреобразователя с контрольным.

Требования, предъявляемые к материалам термометров сопротивления.

Стабильность статической хар-ки

Чистота металла при 0 °С и при 100°С

Высокий температурный коэффициент

Большое удельное сопротивление

Полупроводниковые термометры сопротивления (терморезисторы).

Терморези́стор — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от еготемпературы [1] .

Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году [2] .

Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидовнекоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

номинального (при 25 °C) электрического сопротивления;

температурного коэффициента сопротивления.

Конструкция и разновидности терморезисторов

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (термисторы или NTC-термисторы, от слов «Negative temperature coefficient») и положительным (позисторы или PTC-термисторы, от слов «Positive temperature coefficient»)температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для термисторов — увеличении температуры приводит к падению их сопротивления.

Читайте также:  Покраска ограды порошковой краской

Терморезисторы с ТКС (термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа A III B V , стеклообразных, легированных полупроводников (Ge и Si), и других материалов. Представляют интерес терморезисторы изготовленные из твёрдых растворов на основе BaTiO3, имеющие положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор сгальванически изолированным нагревательным элементом, задающего температуру терморезистора, и, соответственно, его сопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого терморезистора.

Режим работы терморезисторов и их применение

Вольт-амперная характеристика позистора

Зависимость сопротивления терморезистора от температуры: 1 — ТКС 0

Режим работы терморезисторов зависит от выбранной рабочей точки на вольт-амперной характеристики (или ВАХ) такого прибора. В свою очередь ВАХ зависит от приложенной к прибору температуры и конструктивных особенностей терморезистора.

Терморезисторы с рабочей точкой выставленной на линейном участке ВАХ используются для контроля за изменением температуры и компенсации параметров (электрическое напряжение или электрический ток) электрических цепей, возникших в следствии изменения температуры. Терморезисторы с рабочей точкой выставленной на нисходящем участке ВАХ (с «отрицательным сопротивлением») применяются в качестве пусковых реле, реле времени, в системах измерения и контроля мощности электро­магнит­ного излучения насверхвысоких частотах (или СВЧ), системах системы теплового контроля и пожарной сигнализации, в установках регулирования расхода жидких и сыпучих сред.

Наиболее широко используются среднетемпературные терморезисторы (с температурным ТКС от −2,4 до −8,4 %/К), работающие в широком диапазоне сопротивлений (от 1 до 10 6 Ом).

Так же существуют терморезисторы с небольшим положительным температурным коэффициентом сопротивления (или ТКС) (от 0,5 до 0,7 %/К) выполненные на основе кремния, сопротивление которых изменяется по закону близкому к линейному. Такие терморезисторы находят применение в системах охлаждения и температурной стабилизации режимов работы транзисторов в различныхрадиоэлектронных системах.

Термопреобразователь сопротивления (ТС) – средство измерений температуры, состоящее из одного или нескольких термочувствительных элементов сопротивления и внутренних соединительных проводов, помещенных в герметичный защитный корпус, внешних клемм или выводов, предназначенных для подключения к измерительному прибору.

Чувствительный элемент (ЧЭ) первичного преобразователя выполнен из металлической проволоки бифилярной намотки (рис. 1) или пленки, нанесенной на диэлектрическую подложку в виде меандра (рис. 2). ЧЭ имеет выводы для крепления соединительных проводов и известную зависимость электрического сопротивления от температуры. Схема термометра сопротивления представлена на рисунках 1 и 2.

Принцип работы термопары сопротивления (термометра сопротивления) основан на изменении электрического сопротивления термочувствительного элемента от температуры.Самый популярный тип термометра – платиновый термометр сопротивления ТСП градуировки Pt100. В качестве рабочих средств измерений применяются также медные термометры.

Главное преимущество термометров сопротивления – высокая стабильность, близость характеристики к линейной зависимости, высокая взаимозаменяемость. Пленочные платиновые термометры сопротивления отличаются повышенной вибропрочностью.

Недостаток термометров и чувствительных элементов сопротивления – необходимость использования для точных измерений трех- или четырехпроводной схемы включения, т.к. при подключении датчика с помощью двух проводов, их сопротивление включается измеренное сопротивление термометра.

Для измерения температуры различных типов рабочих сред — воды, газа, пара, химических соединений и сыпучих материалов используют термопреобразователь ТСП. Аналогом, производимым Производственной компанией «Тесей», является термопреобразователи сопротивления типа ТСПТ и ТСПТ Ех.Номинальная статическая характеристика термопреобразователей – Pt100, Pt500, Pt1000, 100П и 50П.

Выбор термопреобразователя ТСП зависит от рабочей среды – диапазон температур измеряемой среды должен соответствовать рабочему диапазону термопреобразователя. При выборе необходимо обратить внимание надлину погружной части термопреобразователя и длину соединительного кабеля. Глубина погружения будет зависеть от глубины активной части, которая определяется длиной чувствительного элемента.

Термопреобразователь сопротивления ТСМ. Термопреобразователь ТСМ выполнен в виде бескаркасной намотки чувствительного элемента из медного изолированного микропроводабифилярной намотки. Аналогом, производимым Производственной компанией «Тесей», является термопреобразователи сопротивления типа ТСМТ и ТСМТ Ех.Номинальная статическая характеристика термопреобразователей – 100М или 50М.

Схемы соединений и цветовая идентификация внутренних соединительных проводов термопреобразователей соротивления (подключение термопары)

Таблица 1. Схема соединения термопреобразователя сопротивления (схема термометра сопротивления и его соединений)

двухпроводная

трехпроводная

четырехпроводная

Один
ЧЭ

Два
ЧЭ

Используется 3 схемы включения датчика в измерительную цепь (подключение термопары):

  • 2-проводная. В схеме подключения простейшего термометра сопротивления используется два провода. Такая схема термометра сопротивления используется там, где не требуется высокой точности, так как сопротивление проводов включается в измеренное сопротивление и приводит к появлению дополнительной погрешности. Такая схема не применяется для термометров класса А и АА.
  • 3-проводная обеспечивает значительно более точные измерения за счёт того, что появляется возможность измерить в отдельном опыте сопротивление подводящих проводов и учесть их влияние на точность измерения сопротивления датчика.
  • 4-проводная — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов.

Термопара принцип действия термопреобразователя сопротивления ТСПТ (ТСМТ)

Термопреобразователи сопротивления ТСПТ (ТСМТ) с двухпроводной схемой подключения изготавливаться только с классом допуска В или С и имеют ограничения по монтажным длинам и длинам удлинительных проводов. В соответствии с требованиями ГОСТ 6651-2009, для датчиков с двух проводной схемой подключения, сопротивление внутренних проводов не должно превышать 0,1% номинального сопротивления ТС при 0°С. В связи с этим для различных НСХ присутствуют ограничения по монтажным длинам:

— для датчиков с клеммной головкой максимальная монтажная длина составляет Lmax= (500÷1250) мм в зависимости от конструктивной модификации,
— для датчиков с удлинительным проводом, максимальная длина провода составляет ℓ max= (500÷1000) мм в зависимости от конструктивной модификации.

Датчики с трех- и четырехпроводной схемой подключения, в зависимости от конструктивных модификаций, изготавливаются по классу допуска АА, А, В, С. При изготовлении ограничения по монтажным длинам и длинам удлинительных проводов отсутствуют. Следует учитывать, что у вторичных приборов, к которым подключаются датчики, могут существовать ограничения по входному сопротивлению измерительной линии, которая в свою очередь зависит от длины провода датчика.

Таблица 2. Номинальное сопротивление R0

Обозначение варианта исполнения ТС

Pt

П

М

Температурный коэффициент a, °С-1

0,00385

0,00391

0,00428

Номинальное сопротивление R, Ом

Неопределенность измерений термометров сопротивления

Термопреобразователь сопротивления может быть признан годным изготовителем (или поверочным центром), если отклонение сопротивления ТС от НСХ с учетом расширенной неопределенности измерения в лаборатории изготовителя или поверителя, рассчитанное в эквиваленте температуры (R–Rнсх ± Uпр)/(dR/dt), находится внутри интервала допуска ±Δt (см. ТС № 1 на рис. 3).

Термопреобразователь сопротивления может быть забракован потребителем только в том случае, если отклонение сопротивления ТС от НСХ с учетом расширенной неопределенности измерения в условиях использования термометра потребителем, рассчитанное в эквиваленте температуры (R–Rнсх ± Uпотр)/(dR/dt), находится полностью вне интервала допуска ±Δt (см. ТС № 4 на рис. 3).

Читайте также:  Интерьер ниши в стене фото

Рисунок 3. Иллюстрация к критерию приемки и отбраковки термометров сопротивления.

Из четырех термометров, данные по которым представлены на рис. 3, только термосопротивление № 1 может быть принят изготовителем и только термосопротивление № 4 может быть забракован заказчиком.

Такое правило приемки с одной стороны снижает риск потребителя, который может приобрести некачественный термометр сопротивления только по причине больших погрешностей измерений на производстве, с другой стороны, это правило стимулирует изготовителя использовать при приемке термометров высокоточное измерительное оборудование. Правило также является очень важным при установлении брака Заказчиком, т. к. Заказчик тоже обязан оценить неопределенность своих измерений и уже после этого предъявлять претензии к изготовителю.

Объем и последовательность первичной и периодической поверок ТС установлены в соответствии с ГОСТ Р 8.624 при этом перечень обязательных контролируемых параметров одинаков. Первичная поверка, осуществляемая аккредитованной метрологической службой нашего предприятия, совмещается с приемо-сдаточными испытаниями.

На неопределенность результатов измерений температуры термопарами и термометрами сопротивления влияют многие факторы, основные из них это:

– случайные эффекты при измерении;
– неопределенность измерения регистрирующего прибора;
– класс допуска термопары или термометра сопротивления;
– изменение характеристики ТП или ТС за межповерочный интервал (МПИ);
– для ТП дополнительно класс точности удлинительных проводов, соединяющей термопару с регистрирующим прибором и погрешность компенсации температуры опорных спаев;

Характеристики источников неопределенности измерения температуры термоэлектрическим преобразователем представлены в таблице 3. Бюджет неопределенности составлен в соответствии с Руководством по выражению неопределенностей и нормативными документами.

Таблица 3. Бюджет неопределенности измерений

Источник неопределенности

Обозначение

Тип и вид распределения неопределенности

Вклад в суммарную неопределённость

Случайные эффекты при измерении

тип А, нормальное распределение

Предел допускаемой основной погрешности регистрирующего прибора

тип В, равномерное симметричное распределение

Разрешающая способность прибора

тип В, равномерное асимметричное распределение

Расширенная неопределенность класса допуска ТС

тип В, нормальное распределение

Расширенная неопределенность класса допуска ТП

тип B, равномерное симметричноераспределение

Погрешность компенсации температуры опорных спаев

тип В, равномерное симметричноераспределение

тип В, равномерное симметричноераспределение

Нестабильность ТП и ТС за межповерочный интервал (МПИ)

тип В, равномерное симметричноераспределение

Нестабильность измеряемой температуры

тип В, равномерное асимметричное распределение

Тепловой контакт со средой

тип В, равномерное симметричноераспределение

Расширенная неопределенность измерения температуры, °C

Расширенная неопределенность измерения uТ, при измерении термометрами сопротивления, определяется по формуле:

Вклад случайных эффектов, характеристики нестабильности измеряемой температуры и теплового контакта со средой в расчетах не учитывались, исходя из того, что эти величины зависят от условий применения.

Выбор измерительного тока также влияет на точность измерения температуры. Поскольку ЧЭ изготовлен из очень тонкой проволоки или пленки, даже малый ток может вызвать существенный нагрев ЧЭ. Во избежание значительного увеличения погрешности из-за нагрева ЧЭ измерительным током для 100-омных ТС рекомендуется использовать токи 1 мА и ниже. В этом случае погрешность не превысит 0,1 °С. Для снижения эффекта нагрева ЧЭ иногда используется импульсный измерительный ток.

Источники неопределенности измерения температуры на объекте

В новом стандарте ГОСТ Р 8.625-2006 приведены правила отбраковки термометра сопротивления потребителем. В них установлено, что забраковать термометр можно только, если отклонение сопротивления термометра от НСХ лежит полностью вне диапазона, обусловленного расширенной неопределенностью измерения температуры в рабочих условиях. Поэтому становится очень актуальной проблема оценки неопределенности, возникающей при измерении температуры на объекте. Источники неопределенности измерения температуры промышленным термометром сопротивления можно разделить на источники, связанные с физическими условиями работы ТС и электрическим преобразованием сигнала:

— теплопроводящие свойства данной конструкции термометра и монтажных элементов;
— перенос тепла излучением в окружающую среду;
— теплоемкость датчика температуры;
— скорость изменения измеряемой температуры;
— утечки тока (качество заземления);
— электрические шумы;
— точность измерителя или преобразователя сигнала.

Стабильность метрологических характеристик термометра сопротивления

В ходе эксплуатации метрологические характеристики термопреобразователей сопротивления неизбежно изменяются. Скорость изменения зависит от многих факторов таких как: температура эксплуатации, скорость и частота изменений температуры, наличие химически активных веществ в измеряемой среде и т.д. В связи с этим для датчиков ТСПТ, ТСМТ, ТСПТ Ex, ТСМТ Ex введены группы условий эксплуатации и в зависимости от этой группы нормированы допустимые значения дрейфа метрологических характеристик термометров сопротивления.

РМГ-74 «МЕТОДЫ ОПРЕДЕЛЕНИЯ МЕЖПОВЕРОЧНЫХ И МЕЖКАЛИБРОВОЧНЫХ ИНТЕРВАЛОВ СРЕДСТВ ИЗМЕРЕНИЙ» предписывает определять интервал между поверками (ИМП) как период времени/наработки СИ за который изменение метрологических характеристик не превышает модуля класса допуска СИ, уменьшенного на систематическую погрешность измерений в ходе испытаний СИ.

Для термопреобразователя сопротивления определяющим фактором дрейфа является наработка датчика при повышенной температуре. Влияние старения на дрейф ТС практически не упоминается в научных публикациях. При этом общеизвестно что величина и скорость дрейфа ТС зависит от величины измеряемой температуры. Известно, что медные термопреобразователи сопротивления менее стабильны чем платиновые. Доминирующей причиной дрейфа, в условиях эксплуатации, не относящихся к экстремальным, является изменение физических свойств металлов под воздействием температуры, величина изменений зависит от значения максимальной температуры эксплуатации и длительности воздействия.

Предлагается при нормировании интервалов между поверками учитывать условия эксплуатации, разделив их по диапазонам измеряемых температур. Для каждого из диапазонов указывать свой интервал между поверками от одного года до пяти лет. Предлагаемая градация интервалов представлена рисунке 4.

Рисунок 4. Интервалы между поверками ТС

Кроме того, обращаем внимание на необходимость корреляции показателей надежности, устанавливаемых для датчика температуры с назначенным ИМП. Соответствие метрологических характеристик датчика температуры в течение ИМП присвоенному классу допуска при первичной поверке является принято считать одним из видов отказа. Однако, как отмечалось выше, ДТ в реальных условиях эксплуатации изменяет свои характеристики, а величина дрейфа нормируется в соответствии с РМГ-74. В связи с этим считаем целесообразным указывать в описании типа СИ и сопроводительной технической документации величину допустимого дрейфа датчика температуры за ИМП. Такой подход избавит потребителя от заблуждения о соответствии метрологических характеристик присвоенному классу допуска в течение всего ИМП и позволит рассчитать более реальный бюджет неопределенности измерений на объекте. Указание величины дрейфа за ИМП, отражает реальную картину и переводит её в разряд параметров, относящихся к видам отказа. В любом случае, наиболее корректным представляется назначение в качестве основного параметра надежности – вероятности безотказной работы датчика за ИМП. В этом случае логичным представляется и назначение срока гарантии равным ИМП.

Предельно допустимый дрейф метрологических характеристиктермопреобразователей сопротивления за интервал между поверками (ИМП) не превышает значений, приведенных в таблице 4.
Таблица 4. Дрейф метрологических характеристик термометра сопротивления

Тип

Класс допуска

Температура применения, ° С

Группа условий эксплуатации

Дрейф за ИМП, °С

«>

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *