Частота среза lc фильтра нижних частот

Фильтр нижних частот (ФНЧ) — электрическая цепь, эффективно пропускающая частотный спектр сигнала ниже определённой частоты, называемой частотой среза, и подавляющая сигнал выше этой частоты.

Фильтр высших частот (ФВЧ) — электрическая цепь, эффективно пропускающая частотный спектр сигнала выше частоты среза, и подавляющая сигнал ниже этой частоты.

Рассмотрим в качестве фильтра простейшую цепь RC, принцип работы которой основан на зависимости реактивного сопротивления конденсатора от частоты сигнала.

Если к источнику переменного синусоидального напряжения U частотой f подключить последовательно резистор сопротивлением R и конденсатор ёмкостью C, падение напряжения на каждом из элементов можно вычислить исходя из коэффициента деления с импедансом Z.

Импеданс — комплексное (полное) сопротивление цепи для гармонического сигнала.
Z² = R² + X² ; Z = √(R² + X²) , где Х — реактивное сопротивление.

Тогда на выводах резистора напряжение UR будет составлять:

XC – реактивное сопротивление конденсатора, равное 1/2πfC

При равенстве R = XC на частоте f, выражение упростится сокращением R и примет вид:

Следовательно, на частоте f равенство активного и реактивного сопротивлений цепочки RC обеспечит одинаковую амплитуду переменного синусоидального напряжения на каждом из элементов в √2 раз меньше входного напряжения, что составляет приблизительно 0.7 от его значения.
В этом случае частота f определится исходя из сопротивления R и ёмкости С выражением:

Повышение частоты уменьшит реактивное сопротивление конденсатора и падение напряжение на нём, тогда напряжение на выводах резистора возрастёт. Соответственно, понижение частоты увеличит напряжение на конденсаторе и уменьшит на резисторе.

Зависимость амплитуды переменного напряжения от его частоты называют амплитудно-частотной характеристикой (АЧХ).

Если рассмотреть АЧХ напряжения на выводах конденсатора или резистора в RC цепи, можно наблюдать на частоте f = 1/(2π τ) спад уровня до значения 0.7, что соответствует -3db по логарифмической шкале.

Следовательно, цепь RC может быть использована как фильтр нижних частот (ФНЧ) — красная линия на рисунке, или фильтр высших частот (ФВЧ) — синяя линия.

Ниже представлены схемы включения RC-цепочек в качестве фильтров соответственно ФНЧ и ФВЧ.

Частоту f = 1/(2π τ) называют граничной частотой fгр или частотой среза fср фильтра.

Частоту среза фильтра можно посчитать с помощью онлайн калькулятора

Достаточно вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Похожие страницы с расчётами:

Замечания и предложения принимаются и приветствуются!

На рисунке показаны схемы П- и Т — звеньев LC- фильтра нижних частот и их
АЧХ – амплитудно-частотная характеристика:

Частота среза, при которой коэффициент передачи равен 0.707 (или – 3дБ) относительно
нулевой частоты вычисляется по формуле:

Характеристическое сопротивление фильтра. .
При имеет место рассогласование фильтра. Если сопротивление нагрузки Rn больше Rx
на АЧХ наблюдается подъем в области частоты среза.
Для правильного согласования выбирают Rn = Ri = Rx. При этом затухание на нулевой частоте составит 6 дБ, а на частоте среза 9 дБ.
На первый взгляд, наличие затухания 6 дБ на нулевой частоте представляется неким недостатком, ведущим к неоправданной потери мощности на сопротивлении Ri в тех случаях, когда это критично: например, выходные каскады усилителей звуковых частот или передатчиков. Однако это не должно смущать, т.к. полностью соответствует требованию максимального КПД: равенства сопротивлений источника и нагрузки, поскольку под Ri в этих случаях подразумевается именно сопротивление источника. Иными словами, и в отсутствие фильтра были бы те же самые 6 дБ.
Пересчёт уже рассчитанного фильтра на новую частоту fc’ без изменения Rx осуществляется следующим образом:

Читайте также:  Стенки тумбы под телевизор фото

Расчёт с помощью формы

Из четырех параметров L, C, fc, Rx (Rn), которые полностью определяют рассматриваемый ФНЧ, нужно задать два. Оставшиеся два расчитываются на основании приведённых выше формул. Расчёт удобно выполнить с помощью представленной ниже формы. В два окна нужно ввести значения исходных параметров, выбрать единицы измерений и нажать кнопку "Расчёт". Например, для С = 10 мкФ и fc = 100 Гц получим: L = 1.013211836423378 Гн, Rx = 318.30988618379075. Разумеется такая точность вычислений более чем избыточна и нереализуема на практике. В ту же форму можно ввести реальные номиналы L и C и посмотреть как изменяться fc и Rx. Ниже приведена программа, в которой можно задать реальные номиналы L и C и посмотреть как будет выглядеть амплитудно-частотная характеристика данного ФНЧ.

Расчёт с помощью текстового калькулятора.

АЧХ фильтра удобно рассчитать с помощью калькулятора.
Для полученных выше значений L = 1.013 Гн и C = 10 мкФ программа расчета приведена ниже.
Важно отметить, что в программах для числовых значений L и C используются базовые единицы системы СИ: Гн – Генри, Ф — Фарады.
Дольные единицы записываются с множителем E-m.
Для дольных единиц индуктивности L:
1мГн = 1E-3 Гн,
1 мкГн = 1E-6 Гн.
Например, значение L = 120 мкГн в программе будет записано как L = 120E-6 или L = 0.12E-3.
Для дольных единиц ёмкости С:
1мкФ = 1E-6 Ф,
1 нФ = 1E-9 Ф,
1 пФ = 1E-12 Ф.
Например, значение С = 120 пФ в программе будет записано как C = 120E-12 или C = 0.12E-9.

Фрагмент программы показан ниже:

Кликните по нему, чтобы запустить программу.
В дальнейшем используйте данную программу, подставляя свои значения.
Как сохранять программу и её результаты описано здесь.

В текстовое окно калькулятора будет выведена таблица значений АЧХ (переменная Ku_dB).
В графическом окне калькулятора будет показан график данной АЧХ.

В полосе непропускания данный фильтр имеет спад АЧХ порядка 18 дБ/октава. Для сравнения однозвенный RC фильтр нижних частот всего 6 дБ/октава.
На рисунке показаны схемы RC и LC фильтров на частоту среза 100 Гц в среде моделирования Micro-Cap 12 и их частотные характеристики.

Еще более крутые спады и большие затухания можно получить в многозвенных фильтрах, (см. например здесь ).
Иногда более важным является задание сопротивления нагрузки Rn (например, для согласования с линией передачи), а уж L и C какими получатся. Для этого случая предлагается следующая программа:
Фрагмент программы показан ниже:

Читайте также:  Горох лучшие сорта для открытого грунта

Кликните по нему, чтобы запустить программу.
В дальнейшем используйте данную программу, подставляя свои значения.
Как сохранять программу и её результаты описано здесь.

LC — фильтры я оставил на десерт, подобно бутылке благородного вина, покрытой слоем вековой пыли. Это антиквариат, который на Сотбисе не купишь!

Как ни крути, а не получил бы Александр Степаныч наш Попов звание почётного инженера-электрика, не направь он искровой разряд напрямик в колебательный контур для обретения благословения свыше и резонанса с передающей антенной.
И заскучала бы братва копателей свободной энергии эфира, не изобрети Никола Тесла свой резонансный трансформатор и электрический автомобиль с неведомой коробочкой. А то и вовсе, заширялась бы в подъездах, лишённая идей вселенского масштаба.

И начнём мы с расчёта самого простого LC-фильтра — колебательного контура.

Включённый по приведённой на рис.1 схеме, он представляет собой узкополосный полосовой фильтр, настроенный на частоту fо= 1/2π√ LС .
На резонансной частоте сопротивление контура равно:
Rо = pQ, где р — характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора.
Оно в свою очередь рассчитывается по формуле р = √ L/C .

На низких (звуковых) частотах конденсаторы практически не вносят потерь, поэтому добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки. Чем ниже частота, тем больше витков и тоньше провод, тем проще его измерить тестером. Если эта попытка удалась, то Q=2πfL/R, где R – активное сопротивление катушки индуктивности.
На радиочастотах значение активного сопротивления катушки может составлять доли ома, поэтому для расчёта добротности надо — либо найти сопротивление в Омах по формуле R= 4ρ*L/(πd²), где ρ — удельное сопротивление меди, равное 0,017 Ом•мм²/м, L — длина в метрах, d — диаметр провода в мм, либо вооружиться генератором сигналов, каким-либо измерителем уровня выходного сигнала с высоким внутренним сопротивлением, и определить добротность экспериментально.
К тому же на высоких частотах возможно проявление влияния добротности конденсатора, особенно если он окажется варикапом, хотя современные недорогие керамические изделия (например, фирмы Murata) имеют значение параметра добротности — не менее 800.

Нарисуем табличку с расчётом фильтра для низкочастотных приложений.

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ НЧ.

Если параметр активного сопротивления катушки R опущен, его значение принимается равным 200 омам.
Необходимо отметить, что все полученные в таблице данные верны и для последовательного колебательного контура. При этом, если мы хотим использовать свойства контура полностью, т. е. получить острую резонансную кривую, соответствующую конструктивной добротности, то параллельный контур надо нагружать слабо, выбирая R1 и Rн намного больше Rо (на практике десятки кОм), для последовательного же контура, сопротивление генератора R1 наоборот должно быть на порядок меньше характеристического сопротивления ρ.

Читайте также:  Установка саморегулирующего греющего кабеля для водопровода

Теперь, нарисуем таблицу для расчёта высокочастотных резонансных контуров.
Тут на добротность влияет не только активное сопротивление катушек, но и другие факторы, такие как — потери в ферритах, наличие экрана, эффект близости витков и т. д. Поэтому вводить этот параметр в качестве входного я не стану — будем считать, что добротность катушки вы измерили, или подсмотрели в документации на готовые катушки. Естественным образом значение добротности катушки должно измеряться на резонансной частоте контура, ввиду прямой зависимости этой величины от рабочей частоты (Q=2πfL/R).
К тому же я добавлю сюда параметр добротности конденсатора, особенно актуальный в случае применения варикапов.
По умолчанию (для желающих оставить эти параметры без внимания), добротность катушки примем равной 100, конденсатора — 1000, а для испытывающих стремление измерить эти параметры в радиолюбительских условиях, рекомендую посетить страницу ссылка на страницу .

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ ВЧ.

Теперь плавно переходим к LC фильтрам верхних и нижних частот (ФВЧ и ФНЧ).

Рис.2

Крутизна спада АЧХ этих фильтров в полосе подавления — 12 дБ/октаву, коэффициент передачи в полосе пропускания К=1 при R1 << ρ << Rн, где R1 — внутреннее сопротивление генератора, Rн — сопротивление нагрузки, а ρ — характеристическое сопротивление фильтра.
Однако наилучшие параметры, с точки зрения равномерности АЧХ и передачи максимальной мощности в нагрузку, обеспечиваются при R1=Rн=ρ. В этом случае фильтр является согласованным, правда коэффициент передачи в полосе пропускания становится равным К=0.5.
Ну да ладно, ближе к делу.

ТАБЛИЦА LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

А если надо рассчитать L и C при известных значениях Fср и ρ ? Не вопрос,

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

Данные ФВЧ и ФНЧ называются Г-образными.
Для получения более крутых скатов АЧХ используют два или более Г-образных звеньев, соединяя их последовательно, чтобы образовать Т-образное звено (на Рис.3 сверху), или П-образное звено (на Рис.3 снизу). При этом получаются ФНЧ третьего порядка. Обычно, ввиду меньшего количества катушек, предпочитают П-образные звенья.

Рис.3

ФВЧ конструируют подобным же образом, лишь катушки заменяются конденсаторами, а конденсаторы — катушками.

Широкополосные полосовые LC — фильтры получают каскадным соединением ФНЧ и ФВЧ.

Что касается многозвенных LC-фильтров высоких порядков, то более грамотным решением (по сравнению с последовательным соединением фильтров низших порядков) будет построение подобных устройств с использованием полиномов товарищей Чебышева или Баттерворта.

Именно такие фильтры 3-го, 5-го и 7-го порядков мы и рассмотрим на следующей странице.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *